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1. Summary of work performed E.f.'
0) Overview: during the period of this contract research was :i.
ongoing in several areas: stable array processing (with A. Steele);
two-dimensional reconstruction algorithms (with M. Fiddy); extensions of ;.'t
the concept of cross-entropy distance measures (with L. Jones); and the ;
beginning of new work on array processing in more complicated acoustic . §
environments (with NORDA personnel). Other work, by Jones and by J. ,
Benedetto, was partially supported by this contract (title pages enclosed). a7
1) The array processing work (with A. Steele) In collaboration =
with Dr. A. Stesle | have developed a "sector- focused stability™ method E:;i
for stabilizing nonlinear methods for localization and resolution. This >
work was performed at DRCS, Salisbury, South Australia (with partial ',
support from the DOD of Australia) and at the University of Lowell, under N4,
subcontract. During the period of the present contract we considered the N
destabilizing effects of short averaging times; a paper on this is in &~
? preparation- e 2.
s
2) Two-dimensional reconstruction (with M. Fiddy) We N
considered the problem of reconstruction of two-dimensional distribution E‘;
functions from spectral values as a problem of obtaining finite-parameter b
approximations to optimal Wiener filters. The first paper on this subject '\
has just been accepted by Inverse Problems (galleys enclosed) and a N
second, presenting illustrations, is in preparation. ;':::
L9

n

O

.n‘., .v' .

3) Extension of cross-entropy distances (witli L, Jones) Work
of L. Jones on extension of cross-entropy distance measures has been
applied to obtain new algorithms for incorporating a positivity constraint
in nonlinear reconstruction. A paper on this subject is in preparation ( a
first draft is enclosed).

P B
'/,".“ 4
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.

4) Array processing in a complex acoustic environment (with LE:

C. Feuillade, D. DelBalzo et al, NORDA) Standard linear and nonlinear 1::';

array processing methods cannot be applied unaltered for range, depth and o

bearing estimation in shallow water situations (with, for example, a '

normal mode model for the propagation). We have begun to develop new -

methods for incorporating propagation models in linear and nonlinear array ‘Z'_:';

processing. C. Byrne spent a week at NORDA in June 87, supported partly by L;‘;‘}
NORDA; a paper on this work is in progress (first draft enclosed). b
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2. Background

A previous contract with ONR, for three years and through Catholic
University, was terminated at the end of two years rather than continue
the subcontract arrangement to Univ. of Lowell. The present contract
supported the wrapping up phase of the earlier work with A. Steele and
with M. Fiddy, as weii as the beginning of new efforts with L. Jones and
with NORDA personnel (C. Feuillade and D. DelBalzo). In addition, John
Benedetto was supported for two weeks in his investigation of the use of
wavelets and Gabor transforms to represent transient signals.
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" Work supnorted by ONR Contract N00014-K-87-0394 (Period: May
87-Sept87)
)
:;' E E blication:
::J 1. "Images as power specta; reconstruction as Wiener filter
Ty approximation,” in Inverse Probiems (with M. Fiddy);
"-
N3 Papers in preparati
;i: 1. "Stabilizing eigenvector methods of source localizaticn and
',_ resolution for the case of white noise and short averaging time,”
: (with A. Steels);
i 2. "On entropy critieria for solving inverse problems with positivity
> constraints,” (with L. Jones);
-5_’.‘: 3. "Stable data adaptive matched field methods for ambiguity reduction
s in source parameter estimation,” (with D. DelBalzo and C. Feuillade);
4. "Reconstruction as filter function approx|mat|on some algorithms,”
R, (with M. Fiddy).
vy
N Papers by other authors receiving partial support from this contract:
% 1. "Approximation-theoretic derivation of logarithmic entropy
. i principles for inverse problems and unique extension of the maximum
o entropy principle to incorporate prior knowledge," by Lee Jones
A (accepted by SIAM J. Applied Math.);
o 2. "Gabor representations and wavelets," by John Benedetto.
)
o Talks:
e 1 "Sector-focused stability for high resolution array processing,” IEEE
v Workshop on Underwater Acoustic Signal Processing, Univ. of Rhode
) Island, Sept. 87 (with A. Steele).
) :.
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Reconstruction as a Wiener filter approximation 1! .
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1 Images as power spectra; reconstruction as a Wiener filter .-
approximation -
1
. %
Charles L Byrnet and Michael A Fiddy# : ’ : )
! t2
t Depurtment of Mathematics. University of Lowell, Lowell MA 01854, USA P
$ Departnient of Electrical Engineering. University of Lowell, Lowell MA 01854, USA :
. i w
Reccived 10 August 1987, in final form 17 September 1987 )
“l‘-
Abstract. The problem of reconstructing a non-ncgative {uinction from finitely many ! :
values of its Fourier trunsform is a problem of approximating one function by another and, | .
as such. is anulogous 1o the design of finite-impulse-response approximations to the | :)'
Wicener filter. Using this analogy we obtain reconstruction methods that are computation- ‘ -
ally simpler approximations of entropy-based procedures. Our linear estimators allow for .
the inclusion of prior information about oversampling rate, i.e. support information, as ]
well as other prior knowledge of the general shape of the object. Our nonlincar methods, A
designed (o recover spiky objects, make usc of prior information about non-uniformity in :-'
the background to avoid bias in the estimation of peak locations. -
»
n
| w2
i ;r
’
F\.
1. Introduction :
The problem of reconstructing a non-negative function f(a, b) of two real variables "
from finitely many values of its Fourier transform (FT) arises in a number of ::-.
applications. These include recovering an image or object distribution from its )
spectrum, a power spectrum from its autocorrelation function, a distribution of energy -
in bearing from cross-sensor correlations or a bivariate probability density from its o
characteristic function. In many cases of interest the function f(a, b) is non-negative _f
3 and we shall make that assumption here. The problem of limited data can arise for a e
variety of reasons: to remove the effects of a known convolution-filter degradation g
one can divide by the filter transfer function in the spectral domain, but must avoid )
dividing by small quantities; in the case of sensor array processing one is limited to S
spatial separations provided by the array geometry. ~
Because the data are finite there will always be infinitely many reconstructions -5
{ consistent with the data values. Some of these reconstructions will be reasonably ~ 3
good, while others will not; the data constraints, by themselves, will not automatically - o
lead to a good reconstruction unless the number of data values 1s large. There are l )
several methods based on minimising some cost function, such as entropy; one | 7
problem with such approaches is that it is not always clear just how the resulting ; e
reconstruction is related to the correct answer. The methods we present here are ::\
based on the theory of best approximation in Hilbert space and make clear how the | oA
reconstruction is related to the original, unknown, correct object functicn. f -
’ )
L
3
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2 C L Byrneand M A Fiddy

In order to obtain a good reconstruction it is necessary 1o incorporate additional
information about the function being reconstructed; in some cases support infor-
mation is used or positivity is enforced; in others upper and lower bounds are
employed. In a number of methods one uses a prior estimate of f(a. b); this is done in
cross-entropy minimisation and it has been shown that the Burg maximum entropy
method employs (tacitly) a uniform prior estimate [1]. In earlier work [1] work we
extended the Burg method for the one-dimensional case to incorporate other prior
information and considered numerical examples; our purpose here is to provide a
theoretical justification for that procedure, based on analogy with the design of
approximate Wiener filters. This approach allows for generalisation to higher dimen-
sions, which we also consider. We present both linear and nonlinear methods.

One of the difficulties with methods that incorporate prior knowledge is that it is
not always clear what the prior estimate is estimating. As our development here
reveals, the role of the prior estimate is different in the linear and the nonlinear
methods. The chief virtue of the Wiener filter design approach is that it gives us a clear
picture of the role being played by the prior estimate. Loosely speaking. in the case of
linear methods the prior estimate is an estimate of the whole function associated with
the data, including any noise background component, while for nonlinear methods (to
be used mainly for high-resolution reconstruction of spiky objects) the prior should
estimate the smooth component only; linear methods such as superresolution become
unstable when the prior estimates only the support-limited object and ignores any
noise background, while nonlinear methods that employ a uniform prior estimate,
such as Burg’s maximum entropy [1], become unstable when the background is non-
uniform.

In reference {1] we presented methods for the reconstruction of 1D objects from
limited Fr data. Here we extend these methods to 2D objects and present a unified
interpretation of both cases in terms of the finite-impulse-response approximation to a
Wiener filter; in this way we are led naturally to the particular Hilbert spaces used
earlier [1], where they may have seemed somewhat ad hoc.

It is important to note that, while the Wiener filier and its finite-impulse-response
approximations are used to motivate the reconstruction methods presented here, we
do not employ a statistical model for the functions being reconstructed.

Throughout the paper we denote by f(a. b) a non-negative function supported on
the square |a|<:1, |b|<a. The Fourier series representation for the function f on |al,
bl is

£

fla, b)= Z i F(m, n) exp(ima +inb) (1.1)

- -

We assume that we have the data F(m, n) for {m|<M. |n|<N, from which we are to
reconstruct (estimate) f(a, b). A commonly used estimate is the truncated Fourier
series (also sometimes referred to as the ‘discrete Fourier transform’ because the
summation replaces the integration); for |a], |b|<x define the DFT(a, b) to be

M N
DFT(a, b) = z E F(m, n) exp(ima +inb). (1.2)
-M =N
Note that the prT is defined here as a function of two continuous variables; one
sometimes sees 'DFT" used to denote a sampled version of (1.2).
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In muny applications the orr will be unsatisfactory, particularly if the function fis
supported on a smaller interval within [, A} x[~x, ], or if fis a spiky function
and the number of data values is not lurge. The vFT is consistent with the original

~ data, in the sense that the Fourier series of 0#T (a. b) has the data values in the proper
positions, but may fail 1o be non-negative or to resolve closely spaced peaks. The
objective of high-resolution processing is to employ prior information to obtain better
reconstructions than the prT.

For completeness we discuss the Wiener filter and its approximations, for the 1D
case (for notational simplicity). and then discuss the use of Wiener filter approxima-
tion for the reconstruction of 1D functions. We then turn to the 2D case, the main
differences stemming from difficulties in extending the concept of ‘causal filter'.
Finally, we discuss briefly the connections between these methods and those based on
the minimisation of cross-entropy.
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»

2. Wiener filtering: the one-dimensional case

The Wiener filter 2] is a procedure designed to produce as output an estimate of !
‘signal’ when presented with input ‘signal plus noise’. Assume that {s(n)}, {u(n)} are
independent, mean-zero stationary random sequences with autocorrelation functions !
ro(m), r,.(m) and power spectra R,,(a), R,.(«). respectively, with |a|<x; the sequence i
{r.(m)} are the Fourier coefficients of R,(a), and similarly for R,.(a). The Wiener -
filter is a doubly infinite sequence {/i(k)} designed as follows: given the random i
sequence x(n1) =s(n)+ u(n) as input and y(n) as output, where -

y(n)= z h(k) x(n=k) -xn<® .1 ?‘.‘_

select {/i(k)} so as to minimise the expected mean square error, E|s(n1)— y(n)|*. The v
well known result is that the optimal choice of sequence {h(k)} is the sequence of 7
Fourier coefficients of the function H(a) R.(@)/R,,(a), where R,,(a)=R,(a)+ “
R,.(a), and H(a) is defined 0 be zezo if R, (2)=0. y
The Wiener filter is not a causal filter, since we do not have (k) =0 for k<0. We =
can ask for the causal filter {g(k)} (g(k) =0, k<0) that best approximates the Wiener N
filter, or, going further, the finite-impulse-response filter {d(k)} (d(k)=0 unless ~

K<k=<L) that best approximates the Wiener filter. To obtain these optimal approxi-
mations we minimise the expected mean square difference between the outputs of the
Wiener filter and the approximation. These optimisation problems are equivalent to
best approximations in a Hilbert space with weighted inner product.

To obtain the best causal approximation to the Wiener filter we minimise the
distance

27 2t

SETSA

H(a)- > g(k) exp(ika) 2R,,(a) da (2.2)

k=)

over all causal sequences {g(k)}. Similarly, to obtain the optimal finite-impulse-
response filter with support K<k<L we minimize the error

[
).

LN S

H(a)- > d(k) exp(ike; '2R,, (c) da (2.3)

|
A=A
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4 CL Byrneand M A Fid;l)-

over all finite sequences {d(k)}. From the orthogonality principle in Hilbert space (3]
it follows that the optimal {g(k)} and {d(k)} must satisfy the following systems of
lincar equations:

r(m)= 2 glk)r, (m—k) m=0 (2.49)

L=ty

L

ro(m)= 2 d(kyr, (m—k) ksmsL 2.5)

A=A

Equations (2.4) are the discrete Wiener~Hopf equations. Having solved these equa- ‘

tions we write, for lu|=<,

- L

G(a)= > g(k) exp(ika) Di(a)= . d(k) exp(ika) (2.6)

A=t La K

It is worth noting that the best finite impulse-response filter approximating {g(k)}.
for O<K=k=L, is the {d(k)} above; that is, this choice of d(k) minimises the
approximation error

J.

G(a)~ > d(k) exp(ika)  da (2.7)

A=K

viewed as a function of the d(k). Therefore, the function Df(a) is simultaneously the

best approximation, of its form, of H(a) and of G(a), in the Hilbert space with inner
product weighted by R,,(a).

The error (2.3) is of interest for the reconstruction problem because, for the case
0=K, a non-negative function (H(a)) is being approximated by a necessarily non-real
trigonometric polynomial, in a Hilbert space with weighted inner product. As shown
in reference {1], this is precisely what happens in the maximum entropy method (MEM)
of Burg [4], that the finite polynomial also approximates G(a) is implicit in the MEMm in
the spectral factorisation {5].

In the next section we employ these approximation theoretic aspects of Wiener
filter design to obtain reconstruction methods.

3. Wiener filter approximation and reconstruction: 1D case

We consider the problem of reconstructing the non-negative function f(a), |a|<x.
from finitely many values of its Fourier coefficients, F(m), [m|<AM. We present first
linear methods and then nonlinear ones.

3.1. Linear methods

Assume that we have a prior estimate of the broad features of f(a), in the form of a
non-negative function p(a), such that p(a) = 0 only if f{a) = 0; of course, in practicc we
will not know where the support of f is, exaclly, so p(a) should be positive
everywhere. A rough idea of the support of f can be indicated by concentrating p in
that region. Let p play the role of R,,. f the role of R,;; we are effectively assuming
that, for some >0, we have p(a)=¢f(a) for all a, and that (apart from the scaling) p(a) 1
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Reconstruction as a Wiener filter approximation s

overestimates f{a) everywhere; the scale fiuctor cancels in the end. so 1s not needed.
Then H = fip is approximated by the polynomial DY, and the equations that must be
solved are

M
Fimy=" d(k) P(m~k) - M<smsM (3.1)
hw=A
where P(m) are the Fourier coefficients of p(a). These equutions arise when we
minimise the approximation error

f 1f(a)—p(a) E d(k) explika) | p(a)™' da (2.2)

hm—Af

as a function of the d(k). The resulting estimator of f(a) is the POFT [6). so called
because of its form:

POFT(a) = p(a) D¥(a). (3.3)

a|<, then d(k) = F(k) and the PDFT reduces to

If the prior estimate p(a) = constant,
the pFT.

If the data are oversampled relative to the actual support of f(a) then including
information about this support in the p(a) can result in significant improvement, so
long as regularisation to avoid sensitivity to noise is used [1]. Note that, aithough the
POFT is not necessarily non-negative, it is data consistent; it extrapolates values of
F(sm1) beyond the data window.

3.2. Nonlinear methods

We assume now that f(a) consists of two components, a discrete (delta functions)
component, which is the object of interest, and a background (continuous) compo-
nent, about which we have some prior information; let p(a) be our non-negative prior
estimate of the background component. Letting p(a) play the role of R, and f(a) the
role of R,,, we see that H = plf; for the filter function D4 to remove from R,,=f the
component associated with R,,=f—p it must place nulls near the values of the
support of the discrete component. We perform the calculations to obtain the D§ and
then examine the nulls. We have some freedom in the choice of the K and L; two
choices are of particular importance: (i) M2=L = — K; (ii) L =M, K=0. The first has
as a special case the symmetric linear predictor (sLp) [7. 8], while the second includes
Burg's MEM.
In case (i) we solve the equations

L
P(m)="" d(k) F(m—k) [ml<L=MR2 (Meven) (3.4)
h==-L

and use the fact that DY, approximates H = p/f to obtain, as the estimate of f, the
centred inverted POFT (CiPDFT):

cirorT(a) = p(a)/ Dt (a). (3.5)

If the prior p(a)=constant, then (3.5) becomes the symmetric linear predictive:
method of Johnson [7]. Note that if the support of f is properly contained within the
support of p then, in order to obtain the d(k) that are optimal for that f and p it is
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P 6 C L Byrne and M A Fiddy
: nccessary to replace P(m) in (3.4) by the corresponding Fourier coefficient of the
:‘ function that is p(a) on the support of f and zero otherwise. In practice one does not
AN know the support of f; our point is rather that (3.4) does not provide the optimul d(k)
.: for such pairs p and f.
AN The role of the prior p(a). in the nonlinesr methods. is to reduce bias in the
» estimate of peak locations; if we estimate the background component badly then the
filter, as it tries to climinate the f(a)— p(a) features. must null out (true back-
ground — p) as well as the discrete component. With limited freedom to place nulls,
o bias is unavoidable. This has been shown to be a problem with ses, when used on
o oversampled data (1], and is due to the assumption, implicit in senm, that the
o background is constant over [ — 1, 7). We consider MEM next. as a special case of (1i).
For case (i) we have K=0, L =M and we solve equations
o
= P(m)= " d(k) Fm~1) 0smsM (3.6)
Y k=0
o to obtain the filter function D/)'; we view this function now as an approximation of G,
< not of H=plf. The discrete Wiener-Hopf equations (2.4) are equivalent to the
.. statement (R,,), =(R,,G)., where by (R..). we mean the causal part of the Fourier
series
-
- (R.).(a)= z r.(m) exp(ima) lal<a (3.7)
::_ met)
ki and similarly for other functions. Equations (3.6) tell us that the two causal functions
¥ :'- p. and (f Dy}, have identical Fourier coefficients, out to mdex m =M. Because D\ is
- a finite polynomial we can rewrite fD'). as (fD)'), =f. D\ +].. where j. is a finite
» causal polynomial involving only known values:
\: M=t  M-m
J.(@)= 2 (Z F{=k)d(m- k)) exp(ima) (3.8)
m=| Awl
N From p,=(fD}), =f,D} +j, we obtain an estimate g of f,;
- :
N g(a) = (p.(a)~j.(a))/Di'(a); (3.9)
) : from f=2Re(f,)— F(0) we obtain the inverse PDOFT (1PDFT) estimate of f itself:
»
, 1PDFT(a) = 2Re(q(a)) — F(0). {3.10)
:_‘: Consider the complex polynomial D(z) =d(0) +d(1)z + ...+ d(M)z". If the roots
. of D(z) are outside the unit circle (the minimum phase. or mMp property) then 1/D.)'(a)
. ‘\' is also causal an4 so is q(a). It can be shown easily that, if 1/D,'(a) is causal, then
e 1PDFT(a) is data consistent. although it may not be non-negative. Although it is not
-+ always the case that D(:) has the mp property, it is frequently the case in practice, and
- - the .poFT is usually data consistent. If the prior p(a) = constant, then the 1pDFT reduces
. to Burg's MEM, the D(z) has the mpr and the MEM is data consistent {as well as non-
o negative).
. As remarked earlier, the mMen has been observed to perform poorly when the
_ :, tunction f is concentrated in a smaller region of [ —.t, 71]; this is because the p(a) is a
constant, while the background is not evenly distributed over all of [ - 1, ;1]. Because
. the 1PDFT is {ree to take on negative values it could be used to gauge the accuracy of
1’ f "
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Reconstruction as a Wiener filter approximation 7 b
[Nt
the prior being used; significant negative values should indicate, that our p(a) is not p
accurate. We have not obtained a quantitative measure of the significance of negative ,-}
values, however. ;-.'.
We consider now the extensions of these methods to the two-dimensional case. r::
Although much remains essentially the same the absence of an obvious generalisation .
of the notion of causality affects the extension of the rpFr. ; Py
f ;
. . "
4. The two-dimensional case o
\l
As in the one-dimensional case, the power spectrum of the input. R, (a, f). is the sum . .-:k
of two components, R, (ua. 8)=R.(a, B)+ R.(a, B). and the Wiener filter is the {:‘-
doubly indexed sequence {k(j, k)} of Fourier coefficients of the function H(a, i
B)=R.(a. B)IR,(a. B). To obtain a finite-impulse-response approximation to the -
Weiner filter we minimise the following error of approximation, as a function of the C
S, sy,
d(j, k): ;: '
= 4 T .~
f f | H(a, 8) - Di:x (a. B)R..(a, B) dadp (4.1) A
where ;_.:‘:
;oL Y
Dik(a.B)="3, > d(j. k) exp(ija +ikB). (4.2) o
j=1 k=K .::
In the two-dimensional case the problem is to reconstruct the non-negative [ ]
function f(a, b), lal, |b|<x, from finitely many values of its Fourier coefficients, F(in,
n). |m{<M, |n|<N. As in the one-dimensional case we consider estimates of f(a, b) o
obtained by analogy with the problem of approximating the Wiener filter. ,-'-::
oo
4.1. Linear methods
Assume that a prior estimate of the general shape of f(a, b) is given by the positive .
function p(a, b), and that {P(in, n)} are its Fourier coefficients. As before, we let p :.::
play the role of R_., f the role of R, so that the Wiener filter is H = fip. -'_._\‘
. For fixed I, J, K, L the optimal finite-impulse-response filter function is D(a, K0S
B)=Dj:i(a, B) where the coefficients of D satisfy the equations -:-:-1
;L »
F(m, n)= 2 z d(j. k) P(m—j,n—k) |ml<sM, |n|<sN. (4.3) ]
=1 k=K \]
Having found the d(j, k) we use the fact that D approximates H = fIp 10 obtain our .'-‘\‘:4
estimate of f: : e
POFT(a, b) =p(a, b) D(a, b). (4.4) ?
The obvious choices for /. J, K, L are —/=J=M, = K=L=N.
4.2. Nonlinear methods
We assume now that f{a, b) has a discrete component of interest, as well as a
background component estimated by the non-negative function p(a, b). As in the 1D ;
o
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case we let p play the role of R,,, f the role of R,,. so that the approximate Wiener filter
attempts to null out the discrete component. If the support of f contains the support of
2 then the equations 1o be solved for the optimal finite-impulse-response filter {d(j,
k)} are

z L
Pim.n)= > > d(j. k) Fom—j,n=j) Isms<J, K<n<L. (4.5)

/=1 A=k

The choices for 1. J, K. L will be restricted by the available data, since the data make
up the entries of the matrix that appears in the system of equations to be solved. We
consider here two possibilities. '

(i) LetJ==1=M/2. L=— K= N/2 (M. N even). Solving (4.4) for the d(j, k) we
view D= Djk as an approximation of H=plf, so that our estimate of f is the
two-dimensional version of (3.5):

cipFT (a, b) = p(a, b)/D(a, b). (4.6)

(i1) Let I=K=0,J=M, L=N. Then D can be viewed as an estimate of the
first-quadrant-indexed component of H, which we denote by H,,. With the first-
quadrant-indexed component of p(a, b) given by

pa,b),,.= i i P(m, nn) exp(ima + inb) 4.7

mui) n=i)

equations (4.4) state that p(a, b).. and [f(a. b)D(a, b)].. have the same Fourier
coefficients, for indices Osms<M, O<n<N. As in the 1D case, we can write [f(a,
b)D(a, b)]..=fla, b)..D(a, b)+j(a, b).., where j(a, b),, is a firs:-quadrant-
indexed function that involves only known values. Our estimate of f(a, b ., is then
q(a, b)=[p(a. b)..—j(a, b)..})D(a, b), which may not itself be first- |1adrant-
indexed. Repeating this procedure three more times, for each quadrant, we .stimate
f(a. b) by summing the four estimates so obtained, taking care to subtract con. ~onents
included in more than one estimator. The resulting estimator we call the ipDi 1.

5. Relation to other methods

The reconstruction problem considered here is to obtain the function f(a, b) from .he

values F(m, n), |[m|<M., |n|N, where

F(m,n)= fﬁ ) f(a. b) exp|[ — (ima + inb)) da db/4sT; (5.1)

that is, we are attempting to solve the integral equation. The survey paper by Frieden
(9] describes a number of approaches to this problem.

When the p(a, b) is chosen to incorporate support information. so that p(a, b) =1,
lal<A<a, |b|<B<a, and p(a, b) =0 elsewhere, a small amount of noise in the data

can cause degradation of the pDFT estimator. It is safer to make p(a, b) = £>0, instead

of p(a, b)=0. This is a form of regularisation and is in keeping with the requirement
that the support of p be no smaller than that of f. Since the poFT performs an
approximation of the function fin the (a, ) domain and smooths the effects of noise
(if regularised), it rescmbles the methods of Phillips [10] and Twomey [11]. The main
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Reconstruction as a Wiener filter approximation 9

differences are that the PorT retains the continuous formulation, rather than discretis-
ing f(a, b), and employs a prior estimate of the function f.

It might appear that the roFT is rclated to the Helstrom-Weiner ‘sharpness-
constrained’ method [12). The latter is based. however, on a statistical, or ensemble,
model for the restoration problem and employs power spectra of f and p; the mean
squared error is calculated in the usual L norm. rather than with a weighted norm in
(a, b) space. In the approach presented here we do not postulate the existence of an

ensemble of object functions f 10 be restored and the idea of Wiener filtering is -

introduced only to borrow the weighted error criterion used for approximating non-
negative functions by polynomials. The Backus-Gilbert [13] method is similar in

philosophy to the Helstrom-Weiner approach but there is only a superficial connec- |

tion to the estimators presented here.

Because the finite data are typically insufficient to determine a single, unique

solution to the reconstruction problem, one is faced with the task of selecting, from
among the many possibilities, one particular answer. The general feeling, which we
share, is that the selection should not be arbitrary but should be guided by some
reasonable principles of inference. At this point there is some disagreement concern-
ing which principles of inference are to be called reasonable. In an attempt to resolve
the situation Shore and Johnson [14] developed an axiomatic basis for the principle of
cross-entropy minimisation and Jones [15] has recently provided an approximation-
theoretic argument for the same method.

Among all functions g(a, b)>0 consistent with our data we could select the one for
which the Shannon entropy

entropy(g) = — f f g(a. b) log g(a, b) dadb (5.2)

is maximised. Generally, there is no closed-form solution and iterative procedures are
employed.

If there is available a prior estimate, p(a. b). of f(a, b) then (5.2) is replaced by the
cross-entropy of g, given p:

cross-entropy(glp) = J’ ! f ’ gla, b) log{g(a, b)/p(a, b)] dadb (5.3)

The method of ‘minimisation of cross-entropy’ (MCE) has us select, as the estimate of
f{a. b). that data-consistent g(a. b)>0 for which the integral in (5.3) is minimised. The
optimal solution then has the form

MCE (a, b) = p(a. b) exp( > > r(j.k)cxp(ija+ibk)> (5.4)

je=AM k==X

If p(a, b) is a good prior estimate then the sum in the exponential term will be near
zero; approximating exp(x) by 1+ x leads to an estimator of the poFr form. If it is

known that the function f(a. b) is spiky. then the sum in the exponential term will have :
significant negative values. If we estimate exp(x) by 1/(1 —x), then this is better than '

1+ x for negative x; making this approximation in (5.4) leads to the cipoFT form.

When the p(a. b) is constant over the support of the object function f{a, b) the
POFT (4.4) provides a minimum energy extrapolation of the data, consistent with the
support constraint. In reference [16] we considered the problem of reconstructing f(a. :
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X b) from only the magnitude data, [f{rm, n)|, [m{<M, [n|<N, that is, the phase retrieval
! problem. When arbitrary phases arc¢ assigned 1o the magnitude data and the poFT
\ . energy calculated one finds the energy to be dependent on that choice of phases and

therefore to provide a useful cost function to direct the search for the correct phases.

- 6. Conclusions

In this paper we have considered the reconstruction of a non-negative function from \ Ny
finitely many values of its Fourier transform. We have extended to the 2D case
methods previously presented for 1D reconstruction [1] and obtained a new derivation | )
of these estimators based on analogy with the design of approximate Wiener filters, in
which the object function to be reconstructed and our prior estimate play the roles of
input and output power spectra. To obtain linear estimators we let our prior estimate <
play the role of the input power spectrum, allowing the fiiter to extract those features ! :
not found in the true object. To obtain nonlinear estimators for spiky objects with | X
continuous backgrounds we estimate the background function, and then let it play the :
role of the output power spectrum; the true object function then plays the role of the .
input power spectrum, so that the filter attempts to null out the discrete component.
. The linear methods are extrapolation procedures that are particularly useful when
. the data are oversampled. The nonlinear methods generalise the Burg maximum )
v entropy method, for the 1D case, and provide computationally inexpensive 2D
approximations to other entropy-based methods. g
The methods presented here are derived using the best approximation in weighted .
Hilbert spaces; the linear equations to be soived in each case are the normal equations
X that arise from such a best approximation and we know what is being approximated by |
what in each case. '
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ABSTRACT :t
~ Z
Data adaptive methods, such as Capon's maximum likelihood (ML) "
rmethod, suppress sidelobe structure and reduce ambiquity in source - %
parameter estimation because they are optimized against unwanted
terms actually present in the data, rather than against an a prieri mode! A
af 'what could be present. whien the noise component resembles potential )
source terms and produces a reduced rank Cross-sensor correlation 2
rmatrix in the noise-only case methods such as ML can become unstable. N
By employing a "reduced rank” ML estimator we can avoid this g
instability. This method is analogous to the "sector-focused stability” 2
method recently developed by Byrne and Steele, and is derived by :
considering the generat problem of suppressing ambiguity i1n parameter N
estimation. ~
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The generalized sidelobe problem and optimal suppression

A problem that arices often in appitcations 1s the following one,
stated here in general terrms:

VT T Y Y Y-y

WaESASES

The matching prgblem: Let © be a family of (pessibly vector)

parameters 6, and let A={p(6) |6 in ©) be a family of pairwise hinearly
Independent N-dimensional vectors parametrized by the 6 in @. Our Jdata
consists of the single vector Q=Q(eo). taken from F and the problem 1s

Ty

to determine the value 6=63.

If the members of 2 are quite distinct and © 15 a small finite set
then the problem is easily solved by inspection. More commonly, the set
® is a continuum, the vector function p(8) continuous in €, and the data
vector a noisy version of p(8g). The usual approach in such cases is to

perform linear filtering. such as simple matching via the dot product,
and base the decision on the outcomes of the filtering.

Linear filtering solution: Consider each member 6 of @ in turn, hold 6
fixed and select a linear filter {={(8), a N~dimensianal vector with
entries dependent on 6. Let y(6)={{'p| 2= {*pp*f be the (magnitude
zauared of the) filter output. We know from Cauchy's inaquatrty that
yle)(p )L D), witn equality if and only if { =up . for some =calar «
from the function y(6) we can then determine 64,

Exzmple: For each 6 let (8)= p(8) / ¥(p(6)'p(8)) . Then y(@lc p’p, with
equality if and only if ©=95. This method we shall call simple matching:

the graph of the function y(8) is usually called the ambiguity surface.

If, 1n the simple matching approach, the output g(el) 1s large for a

;
.
.
I
.

value of 8,=8q. we say that there is 3 sizable sidelcbe at &,. for the
true value 8. We shall describe two general procedures far reducing the

delobe effect, the first 3 linear method that does not depend on the
tual data oblained, and the second 3 data adaptive methad analoQous o
Capon's maxrnurn bikehbood method (MEM) for specirum estimation,
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A linear filtering method to oplimally reduce sidelobes %ﬁ
%

Denote by y(8:8,) the magnitude squared of the filter output £9)°p ZE

h!
corresponding to fixed value 8 and true value 8. For any particular Eh:l
problem we do not know the value of 60, which could be any member of R
©. For those 8=84 we want y(6:8y) to be small; since we do not know €4
._'-\
let us make the average value of y(8:6q) small, as 9y ranges over the !
various mernbers of €. Specifically, for fixed 6, select that filter {(6) =74

for which jg(e;eo)/g(eo)‘g(eo) d6g is minimized, subject to the
constraint y(6:6)=1; the precise meaning of the integral will be ciear

g

from the context. We can formulate this in matrix language as fo!lows: .
g™

]

Minimize [*Af , subject to {'p(8)=1, where A is the N by N matrix :Z-;
with entries Ay = CTY T /g(eo)‘g(eo) d8g . and subscripts :;;E

ey

denote the particular entry of the matrix or vector. Using the normalized
vectors u(8q)= p(8g)/ ¥ (p(6g) p(8g)) we can write A= ]g(eo)g_(eo)‘ dég.
The optimal filter is then iopt(e)z A(B)A” ’Qge) . where the parameter
%(6)= 1/p(8)* A™p(6) . provided that A 's invertible. The value o
0PT(O)= | Ly (8)"2 | = fo(e) a7 'n| 2/ p(6)" a7 '(6)| 2 is then the E
furction we want to use to compute the optimized ambiguity suriace. o

If the matrix A is not invertible then pseudo-inversion 15 used to obtatn
the optimal Miter: this will be the case in the normal-mode situation

considered below.

For fixed 6 the optimal filter f(8) operates on the data vector p and

we want the value IL(e)‘le to be small if 6=0p. The optimal filter 1

designed to make this value small, on average, but the actual data we é
have is a particular p(8g): we do not really care 1f jL(a)‘Q(e,)lz is :‘:’
large for other values G,=6,. since ((9) dues not have 10 operate on E;
g(_e,). Data adaptive metinods, such as Capon's MLM, optimize the fiiter 5"

403105t what 15 actuaily there in the data, nat aganst a Ciass of
potentiai, dut mostiy not actual, data vectors, We Consider nevt ine
SVECMZION to our Aener s problent of $he A3ty aaantive appraacn ol Canon,
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Nonlinear data adaptive (iltering for sidelobe suppression

Inpractice the data may consist aof several p, each a noisy version
of Q(eo). Of interest then is the average over all the p of the value of

the output y(8:6): average output = <|£(8)"p| 2> = 1(8)'<pp'>1(o) =

[(8)°RI(8). where < > denotes averaging over the available p and R 1s the
ratrix R=<pp*>. For fixed & let us find that filter £(©) for which this
averaged output. [(8)*RI(6). is minimized. subject to the constraint
£(6)°p(8)=1. This "maximum likelifood” solution is easily seen to be
Len1(8)= MR p(8), where the paramster is A(6) = 1/p(6)*R™'p(6). The

averaged output 1s then ML(8)= 1/p(8)'R” ‘g(e): here it is assumed that.
one effect of averaging and of noise is to make the rank of R equal to N.
Note that OPT(8) aiffers from ML(8) in that A is replaced by R in ML it
is in this sense that ML is data adaptive. .

The ML approach will generally outperform the OPT method because
it can employ its algebraic freedorn to reduce sidelobe #ffects coming
from what is actually present in the data, rather than to guard against
potential threats that are most likely not present.

Because loss of resolution in linear estimation is a particular form
of sidelobe problem the ML approach typically achieves better resolution
than linear methods. If the data vector is a superposition of two or more
members of A, say Q=Q(90) + Q(el), with @5 and 6, cimilar, then the

simple matching method may result in | ﬁ(e)‘g] 2 being largest at 6=6-.
where €, is neitner 6 nor ©, but is near each. We could say that in
this case the sidelobe at 65 caused by 6 is added to that caused by &y,

resulting in a maximum between the two carrect values. Because ML can
do a better job of suppressing these sidelobes It can resolve when the
simple matching, or even the OFT method, cannot.

In many practical situations the data vector includes an additive
randorn noise component. Depending on the statistical behavior of this
noise component the performance of the ML method can vary
considerably. In{ | we discussed the inctability of the ML estimator of
bearing of planewave source fields, 1n the presence of spatially
concentrated nose and aystematic phase errors. The instability arizas
when the nonse component “iooks Tike” potenti2l signals and carrssponds
U0 a reduced rany cormponent of the matrs R, '
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In the next section we shall consider the OPT and ML methods for
the case of normal mode propagation in shallow water: here also the
nolse component can lead to instability of the ML melhod and we shall
need to develop more stable procedures.

Normal-mode propagation and signal processing

The field at range r=0 and depth z excited by a unit amplitude point
source at range r=ry and depth zj in @ wavequide is

M
P(z) = Plzirg.zg) = 1M 2 Splrp.2g) Up(2). (1)
=1

m

whiere Uq,(2) is the mth modal eigenfunction of the depth-dependent
boundary value problem, and Sm(ro,zo) 1S the rnodal amplitude value,

given by
Se(rg.2g)= exp(31i/4)exp(-B v rg* kMo Wm(Zg W (21K ) - (2)

The pressure field is sampled using a vertical array of sensors, at
depths z,, n=1,... N, and single frequency components extracted via FFT to

from sampling the signal-only field, can be written as p=Us, where U is
the N by M matrix with entries Uy q=Unp(2), and 5 the M by | vector
with entries s.,=5,.(rq.24).

In the case of 3 high-10ss bottom mast of the noise-reaching the
array is unaffected by the bottom, so contributes top a vectar of the

o
W

L

"3" form 1 . whose entries are (possibly correlated) random variables. I the
< bottom is low-loss then noise energy can excite the modal structure and
Sf. contribute to p a component of the form UY, where ¥ 1s an M by | vector
‘::ﬁ whose entries are random var:ables representing the aqgreqate

;;'5 excitation of each maode by the superposition of noise sources. We €an

therefore wrile the data vector asp =Us + UY + 7y =Ux+ T, , with
randomness entering through the @ and the 110 when one considers the
effects of rough curface scatlering on the signal one includes randum
phase and amphityde modutationg of the entries of §0 The matrix

i
AANNSALN]

o 6 T e . L o -
Ny ™ . . LI A f./_-’.._-/'_
NEAAE O BT AN S 5 5 A S A

-
-




R= <pp"> now has the farm
Rz Usse™>U" v UBd™>U" » <nn’> = Uss'U" QU™ < 6 (3)

We shall assume that the non-madal noise component, G. 15 a multiple of
the identity matrix, representing spatially uncorrelated noise. such as
sensor noise. The interesting term in (3) is UQU®. the modal noise
component of R.

Typically the number of modes, M, will be less than the number of
sensors, N, 50 that the rank of the matrix UQU" is at rmost M. Because
the signal component, Us, and the noise component, UZ, both |ie in the M-
dimensional linear span of the M colurnns of U the naise looks like
potentizl signals and we expect ML to exhibit the sort of instability we
discussed earlier. We shall return to this point when we discuss stable
nonlinear methods; for the moment we consider the OPT method In the
context of norrmal rmodes.

Optimal linear processing in the normal mode case: Let us denote by
B(8g)= prg.2g) the vector of field samples we would obtain in the case

of only a single source at 85= (ry.zg). Let us normalize p(8y) to get
u(80)=p(64)/+ ((8)" p(6y)). The matrix A that represents the totatity of
potential source vectors 1s now A=[u(8,)u(8y)* d8y . where integration |
with respect Lo 6, means aver 0sZg¢H=channel depth, and aver Osrgee,
and deqg=rdraz, From (1) and (2) it follows that the matrix A has the

form A = UBU, where B is the matrix with entries By, |, given by
- - * -7
Bm.ic* | Smlro.20)%k(ro.20) | |R(rg.2g)| [ * rodrgdzg . (4)
and | | p(ro.z)| | =¥ (R(rg.29) R(rg.20)).

he minimization probiem 1o be salved 1s: Furinize AL subject to
£7piA)=i. Tms 15 equivalent Lo Minimize v’ By, subject ta v'sir 2)=1,
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where v=U'f ang ptr.z)=Us(r,z). The optimal v 1¢ Mopt:“'B- Ye(r 2) for
o.=1/¢(r.2)*8  Iglr.2) . The optimal filter Lopy 1s found as foliows:
assume that |

Lopt
w={U*U) , and

=Uw for some w: then \_zﬂpfu‘iopt:u‘uﬂ. so that

_'-Vop Lopt:U(u‘U)' sxopt The optimal estimator 1s then

OPT(r.z)=<| Lopt’g(r,z) | 252025(r 2)* C*RCS(r 2). (S)

where C=UU'U)~ 187!
N

Note that the entries of U'U are (U'Wy, = 2 Um(zn)Uj(zn)d. -
H n=1 ' .
Even if | Um(z)Uj(Z)“dz =0 for m=j, it may not happen that “7)
z=0
(U‘U)m‘}:O . for m=j; the latter involves the locations of the sensore,

whereas the former does not. Because the integral is only over the water
column and does not include the bottom it may not be zero either, 2s in
cases such as the Pekeris rmodel in which 0¢z<eo are the limits on z.

Mode-fiitering as an approximation to the optimal processor: We obléin
the mode filtering procedure discussed in Shangl | by making several
zimplifying assumptions in the computation of the matrix B: specifically,
et us assume that | |plrg.2g)| | is corstant, as a function of (rg.Zg)k

and that the functions Um(zo) are orthogonal over the interval 0szp<H.
Then the entries of B are Bm‘}ﬁ-_w, m=j, Bm.m=l/2f5mkn.l. <o that 8 15 2
diagonal matrix. If we assume, in addition, that the values 8., and ky, do

not vary greatly with m. then B is (@ mulitiple of) the identity rnatrix and
s0 C=U(U'U)"!. The OPT estimator is then approximated by the mode
filtering estimator (MFE)

MFE(r.2)= o2s(r.z) (U Uy U RUU L) Te(r.z) (7)

-f N
with ¢ = s(r.zi°s(r.z).
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The ma=imum likelihood approach 1n the normal-ninde case: From the

matriz R=<pp” >, we obtain the ML estimate:

ML(r.z)= 1/ o(r.2)' R Vp(r.z) (2)

Since R=Uss U+ UQU" + ¢l , it follows that, if the rank of O is M, the
eigenvalues Ap of R, for n=t1+1 . N, satisfy A =€ and that the associated

e1genvectors x, have the property that Utz =0 : far n=l .M A %E.

writing R = XLX", where the columns of X are the orthonormal
glgenvectors %, and L ts the diagonal matrix of eigenvalues of K, that 13

L =diagih.... Ay}, we can rewrite (8) as

N N
ML(r.z)= 1/ kn" }Q(r,z)*ggnlz =/ 5 )‘n_l lg(r,z)‘u‘y_.r,]z. (9) =
n=1 n=| :::
Because of the reciprocal weighting by Ap, ~! those terms corresponding ;"

T
‘l.l"
1

to the lowest eigenvalues contribute most: that 1s, the sum is
essentially over n=M+1,... N. Because, for these n, Q(ro,zo)’gn =0 for

(rg.2g) 2ssociated with the true source, we might expect, as in the usual

e,

Case of ML estimation, to discover the value of (rg.2g) by evaluating

e

ML(r.z) and looking for the largest value. However, each of the terms in
(9) corresponding to n=M+1.... N is zera, for all (r.2). It icllows that the
ML estimator will show a large response for each (r.z), not only for the .

" '..1' vy .-':v’ Yy ..l

.'
~ A

(rg.zg) corresponding to the actual source. The resulting ambiguity S
surface will be essentiatlv uniformly “white”. ‘.

It is important to recall that this fatlure of the ML estimator
occurs when the noise component is essentially modal, that 1s, of the =
form UOU®. as wauld be the case for a low=loss bottom; if there is no 5::

noise component of thic form then the ML procedure should work better.
When the rmodal noise is present the situation is 3analogous to that of ,2;

l\.
spatially concentrated planewave noise and the <olytion we shall '\

(5F35) methiod

‘ -

consider next 15 similar to the "sector-facused stabihity”

O,
> % 'y,‘.
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Reduced-dimension ML method for the normal-mode case

The matrix U is N by M and induces a linear transformation from the
space of complex M-dimenstonal vectors, C”, into the space of complex
N-dimensional vectors, cN: we shall assume that U'U is invertible, which
is equivalent to U being one-to-one, or to U* being onto M Every % in N
can be written uniquely as a sum x=Uy + w . for some v I1n ™ ard woin
cN such that Uw=0;: 1n fact, v=(U'U)" U x and w=x-Uy.

The ML rnethod, because 1t relied on the eigenvectors of R
associated with the lowest eigern\/alues failed when those eigenvectors
X N=M+1,N, had the property U'x X~=0. To obtain a data adaptive,
nonlinear method that works in the presence of modal noise we need to
rely on vectors x with the property that plry. zo) %<0, butl such that

D_(r,z) x=0 for other values of (r,z); in particular, we rnust not have
U*x=0, or even near zero. One way to prevent this behavior 1S Lo require
that x not have the component w such that U‘iva_: that 13, require that x
have the form x=Uv for some v. Let us now solve the following
optimization problem, in liey of the one that teads to the 1owest
eigenvalue of R:

Minimize x' Py , subiect to x¢'=1 an w=Uv for some v

The vector ¥ that solves this problem can be obtained in a particuiariy
simple way: define the M by M matrix T=U*u)” V20t RUUtUY 4 then
Z=U(U‘U)"_e_, where ¢ is the normalized eigenvector of T asedliatzg with
the smallest eigenvalue. We can now deterraine (rq.2g) by searcming 07
the zero of the function p(r,z)*x . or, having obtained T, we can caiculat?
the reduced maximum likelihood (RML) estimator:

RML(r.2)= 1/ g(r.2)' T Tq(r2) L gr2) = ww VU . 10
which is equivatent to a ML procedure on the moge-filtered B

RML(r.2)= 1/ S0 2) 1sirg.og)elrg. 2t o0l Halr ) ()

-
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Reduced maximum likelihood method for the general case

what causes difficulty for the ML estirnator in the norral mode
case 15 that the modal noise resembles actual sources and that its
matrix, UQU", has rank M but dimension N. The ML method and other high
resolution methods expect the lowest eigenvalues to correspong to
eigenvectors orthogonal to the signal component, but not to all potential
signals as well. When this happens the ML is useless and the reduced ML,
or something fike it, required . Y

Let us suppose trnat}r;e matr»/R haa rank M, but dimension N>M, so 4 .
that it has the form R=UTU", where\/ic an M by M positive definite /d"/\ ’\/
Hermitian ratrix and U is some N by I matrix; in the normal mode case ; ,

+ it consists of eigenfunction samples, but in general. we will not have 3 y" " )<
-?,_U\(U model for U. Assume, for now, that U is known and that T is data al ‘
dependent. wWriting T=wWw"*, where W is an M by M matrix, we have

R=UWW'U"=VWV*, for V=Uw. Because R has rank M its inverse does nat

exist, so ML cannot be formed. A standard trick to create invertibility is

~»3 toadd a small positive quantity to the main diagonal of R: in the norma!
':h-)/,r\'" mode case above this was done through the €] term, but did not make ML
usable. Instead, we consider repfacing R by K", the pseudo-inverse of
R, to obtain a reduced ML estimator.

+

The pseudo-inverse of R is 8==V(v"V)2v"=uU'w) 1 Hurwytu
and the reduced ML estimator 15 Jcssh DY et

RML(&)= 1/p(6) R=p(e) = 1/5(8)° T 's(e) | (12)

where <(8)= (U'U)"U‘p_(e): this agrees with the RML we obtained above
in the normzal mode case.

In general we may not have a madel for U and may need to form R*
some other way. We can do that by taking R=XLX"*, R¥=XL*X", where L*

is defined to be the diagonal matrix with entries An ~1 provided A
not ton clase to zero, and 0 otherwise. Using K# in (12) qives the RML
estimator in the general ¢ase. '~<‘ P: UNYU +

- IR tru = VULV Y UU
T tanles heo T=(UrL) UTR U UV v

s IR , S
ooty utruutoy 2 Y

VY W
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Using the matrix structure Lo obtain environment paramelers >
po
In{ | Buckingham ang Jones Qiscuss the use of the angular %
drstribution of noise power received by a vertical array to estimate the t
critical grazing angle of the bottom, and hence the compressional sound

speed in the bottom sediment. This is an example of an mnverse problem,

in which environmental parameters are estimated by comparing measured
data with theory.

In another paper [ ] Buckingham considers the structure of the modal
noise component UQU", for the case of a range-independent isovelncity
channel with a low~loss bottom, where the noise energy is uniformly
distributed immediately beneath the surface. The interesting point made
in{ 1, from our perspective, is that the matrix Q is essentially a

. ‘- ";“;\.Ii ' m\{){ﬁ ‘*,\‘;-" ‘, -‘.

. SN
I/

]

L 4]

multiple of the identity matrix. Knowing that the theory requires this ;\;
and having measured R=UQU" in the noise-only case, we could estimate E
the matrix U: for each choice U form 8=(0*0)"'0*ROG*0)™": 11 we have X
chaosen the correct J=U then G=Q=«!, whereas for wrong choices of U the E
matrix @ need not be diagonal. %
e,
An interesting object of study would be those noise fields for which oy

the matrix Q is diagonal. Is it generally true in normal mode b
environments or are such noises special cases? It i1s not a statistical ZE;’.
phenomenon but, in the case considered in [ | at least, follows from the Z:‘,‘
nature of the eigenfunctions U.,(z) and the manner in which the sources ._’:;
of independent noise enerqy are distributed spatially. The analysis in| | ’
aoes nvoke a "large M” approxirnation (p.1188, (10)). so leaves open the }_z
question of whether or not Q 1s diagonal for small M. NS
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W are concerned hers i h suttable oriteria o use (or The g

recanstruction of positive tunctions fram Hrmte«j data. ‘we chall aszume
that the integral of the function (call it Rixi} over its (corpact) supnort

~

18 known, ¢o that, by rescaling to have integral one, we may ag

ot
S0t ssume that
the Tunction to be recovered 13 a (mezsurable} probability dE"E t
elect a pr

y
function. & general pracedurs for recanstruction is to = iar
extimate of Ry} (C JH iR and then ta scoept ag the estimate of R
that oata consistent density Qiwd that 14 closest to P(s, ‘2!': sarme -

: reasure of iztance, The diztances DR, U-l.gu(:-:} Flxiids
g,2) is 2 suitably constrained function of y,2=0, provide a wide
reconstruction procedures, which is the topic of this paoer,

case of zuch reconstruction is the "minimization of cross
method (MCE}.

o
e}
L
=

J
P

Ty
]
(Y]
Cals
x (]

(4]
=
-t
3
[
-9
.L.
('D

The method of minimization of cross entropy (MCE), implicit in the
wark of Shannon (1], and advocated by nurnerous authars, including
Jaynes (2,2], was proposed by Kullback [4], who called it the "principle of
rinirnurn directed divergence”. The term “tross entropy” is due to L.
2ood {S]. The MCE method has been °'rud1ed emwﬂu by Shaore and
Johnson, who have derived the principle fmm awioms of consistent
inverence (3] and have used the resulting reconstruction method in speech
processing and spectrum analysis (7). '

Although the awiomatic derivation of the MCE method found in (8] is
baged on probability theory, it is Tinding apolication in the reconstruct-
1on of essentialiy non-probabilistic functions {which hapc-en to have tha

mathematical properties of probability density functions), such as eneray

cistributicn as a function of bearing {array processing), “-rau attenuat-
ion functions (in tomography), and nen-negative images (in opticsl. The
properties that the reconstruction will exhibit in these cases are not

23sily predicted from the axioms of logical inference from which the )

rngthod 1 derived. The basic problem iz one of approximation; we wish i

ta uze the data and prior information to construct a function that will 2
approvimate the desired function in some appropriate sense, The MCE .

reethad employs a (non-surmmetric) measure of distance between 1

functions that obeys an arthaganality principle analogous to that 1
aszeciated with the metric of Hifbert space. }

v
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MCE methed fram ather distance minimiZatien
orocedures cbtained from the $0-called Ali-3iivey-Coiezar diztances.
i er we consider the extent to which the orthagonality snincipie
Turther distinguishes the MCE methed from methads based on a much
wider class of distances.
The problem is to reconstruct the non-negative measuratie function
W20:0, defined on a compact set X within d-dimensional real Euclidean

.

pace, knowing only the linear functional values ry, k=0,..K, given by

In {8] i* was shown that this erthoganality princinie serves &0
§ 1

TENEIOERORTS "

2N}

where the g (u) are known linearly independent bounded measurable

£

functions. We assume that gyxi=1 for all », o that ro= area of Ris,

which we then take to be equal to ane. We let & be the collection of ail
rmeasurable probability density functions supported on X for which (1)
holds. A member of &2 is called somissitie if it is bounded above and

away from zero on M. We azsume that we have available a3 orior estimate
T Rix) in the form of a measurable probability density function P{x),

n
=u "'E"-'rfvj in . To abtain our reconstruction festimate) of 84x) we select
that Q(x) in 2 closest to P{x) in some appropriate sense,

To measure claseness we employ non-negative distances of ¢
form

DIQ,PY = [ 1(Q(x),P(x)) dx , (21

where 1(y,2) is a suitably smaoth kernel function. Associated with a
particular distance is the following optimization problern:
Problem A: Find §in & such that D(Q,P}¢ D(Q,P), for all Q in &

For example, the MCE method employs the kernel f{y,z}= y log{y/z),
and D(Q,P) tecares the grass entrany of Q, given P

ECQ,P) = [ Q) agld(x)/P(x)] dx 5 (3}

a\
MCE =olution is that O EE" Gin & for which (30 is minimized. T
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2. The orthagqanslity principie fo- the MCS method

*

It may be that thers 1g no member of &7 mr which EOQ,P) 1S nmte.
suppoze the support of Fis not all of X and gyla) is 1 Tor thoze 3 1n ¥,
but cutzide the support of Fyowhile 0 otherwisze, and that r1:1. However,

Hothere de ane Q i 27 Tor wehich EOQ.F) 1s finite the the MCT solution
~

gnists 2nd has the form
Grpglniz Pl eapl ag a0+t 3 300 ), (5

far s an N, and zero othervise, where M is the union of the ,uspc. 50

for which E(Q,P) is finite. A rigorous proof of thig was fir-_r.i‘.
zar {2] and @ more restrictive sufficiency version was
ier by Kullback [10].

Assume nove that the support of P equals X, 50 that the MCE solutian
exists and has suppart X, Let 7 be the set of all admissible densities
having the form

T(#) = P{x) expl ty Gplr) + v + b g8} ), in X, (S)

Jince | T(x) gz =1 there are only K free parameters and t, = ta(t .ty

12 3 function of the other parameters; specifically,

~—
o
i
R
.
—
1T

t(. = g {F:v)e p; 1' m\+.__+tK qf

The following thearem iz the ardbogons/ity priveip/e of interest here:

Theorem: The choice Tix)= UMCE(X) minimizes E\P.,T) aver a1 T in 7.

praof: It is easily shown that E(R,T)=E{Cppe,T) + E(R,P) - E{QpmpeesF), &

that E(R,T) and E(Qppe.T) are simultanecusly minimized. But it Toliows
from elementary properties of the function f{y.2)=y loglys/z) that

u,uM. V"’M"”‘ ElQpep, Th with equality 1T and only 17 T=Qpee.
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In this paper we are setned with charactemzing those distances

| '.:”'.,‘:_',F':'= [ HANTES Jr{ <) dn Tor whch the J[m]llﬂnlj’ CI[ThUI]UHJHL:‘ pi ‘m{]p}e

K- hatlas.

' I The qenerslized orthogonslity nrinciple

IT Pz an admizsible denzity and the A in & minimiz ing DEQ,FY i

: stz admizsible then 10 can be shown that the Euler-Lagrange egquation

‘ must be satisTied; that is, for all » we hav

; QPO = 3y ggla) + o+ 3 0l {7

, far zome choice of constants AryseensBpgs WHETR 1,(Y,2) is the partial

o cerivative of T with recpect to the first variable,

N

: wWe now generalize the arthogonality principle by defining the class

~ 7 now to be all admissible densities T(x) that, for same constants

3 Lo ey Ty saticfy the equation

& ¥} K b 9

2

X fy{TixLPO) = t, Ooli) + o # tye Qilxd , for all x. (3)

N vie then consider a second problem associated with the distance Dt

N

by

N Froblem B: Minimize D{R,T) over all T in 7.

- N
y The distance measure D(Q,F) 15 then 5310 t0 exhibit the &rasagans!iiy N
¥ LriCiTE 1T whenever Problem A has unique solution G(x) then it is als N
| / - : .
~ the unique solution to Problem B, B
\ Example 1. If f(y,2) = y log{y/z) then D(Q,F)=E{Q,P) and the orthogonality 3
. principle holds. A
, g

L

; Example 20 17 fly,2) = (4=23572 then Qlil= PG+ 3y 0pl2ienray gy (2] B
‘ fotlows from {32 although the orthogonality prmmp e holds there may be |
’. no positive member of & of this farm.
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- s = v, st 1Y St e J S U S e s et .
Rampie oo 00 TLY,2) = Y elE Yl wnere el 1 thitee TImes Continuausiy Iy
L. . - g - g - . ¢~ g - . o e avye e =
differentiable and a<s/dt= =0, then the distance DOQ,F) im0 the smacth Y
ali-Silven-Caiczar clags; 1t was shown in [E] that anly BIOQF) satenes B
e )

;,:T -
5
=
b
[ap]
@
)
w
%
SEANGH
o

YWe begin now to extend this result of [5] to a wider class of . | L

distances associated with more genera) functions fly,2).

]
2]

o

ible kernel

L
mn
D
£

ularity_assurnptions and admis:

o 5'-.’-."\"-."-\"-."-.’: V \[ !: .

]

wWe consider a general distance measure D(Q,Pli=j 1{Q{x)PL dx,
and impose canditions on the function fiy,2) in order that the distonce D
have reasgonable metric properties,

a;f:;s:r"f

-2

P’

‘
»
»

condgition 1@ Tﬁg,g) = ¢ = canstant, for g0 ;

w
. . X
we want DIQ,P)2D(Q,0) always and the Euler-Lagrange equation ::
correzponding to minimizing D(Q,P), subject only to Q>0 and [ G =1, i¢ ]
f (Pix),P(xiI=constant, !
! "
o
Y
. K
Candition 2: f(y,y) = 0 for y=0; o
we want DIF(x),P{x1)=0 for all P !’
If we let hiy)=f{y,y)=0 then dh/dy =0. But gh/dy= (g + To(y) so :
A
it follows from Conditions 1 and 2 that )
Candition 3: falyyl = -c, y=0 . :-__
s
Qur fourth condition is that f(y,z) be strictly convex in the first . '

4

variable; that is,

Condition 4: fy,(y,2)>0, for all 4,.2>0;

Ay L AN

we arrive at this condition by examining what happens ta DIQP) for Q
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near Q. Let kg, be o fixed point in ¥ and let U be 3 neighborticog of =g, :
Then let hix) be sny continuous function, supported on U, and not in the »
: : . _— : —_ 2
linear span of the functions ¥, gk(x;, k=0,...., the restrictians to U of :ﬁ

the functions guix). Let jis) be the projection of hiy) onte the gpan of
A ] pro) F

LACE A

the 3y 9, (%) and let mixd= hixd-jla); then | mix) g {x) dx = 0, k=0,..,K,

The functions G(x) + em(x) are data consistent, for all £=0. ‘We want the N
rinirmum of | (G0 +em(s),PO00 to occur at e=0; the secand derivative, oy
~ W e e ;oL : 7

with respect to g, 18 | Ty lQGg+em, Py misd< g, This must be %
s

positive at =0, Tor every neighborhood U, no matter how small, znd for ’

every point #q; from our fresdom to select the problem, hence the D)

and Fix), it follows that Condition 4 must hald.

aumraarizing, we say that f{y,z) iz an sawissitie farna? if the
Tollawring conditions holds 1y{yyi=-Toluyl=c 5 flyyi=0, 1, (y,2)>0, for

311 y,z>0.

The four conditions above do not quarantee that the Q(x) satisfying
the Euler-Lagrange equation will be positive; the function 1{y,2) is said

to be gm-samissiliie 11 the equation (7) always has @ positive solution far

Q).

i 4'."‘{-'-'-'1’-‘"-'-".-' v -‘. )

3. Neceszary conditions for the arthogonality arinciple

. Lo e ,
The Tollowing Proposition fwhich we prove in Appendix &) is basic

to our characterization of distances DICQPY=f T{QU),F(:)) di having the
arthogonality principle:

Froposition 1: Suppose that f(i,2) is an admicsible kernel such that, for
every choice of R(x) , the g,(x) and the pricr P(x), the orthoganality

r principle holds for D{QPI=[F(Q(x)P(x))dx. Then foy 4(y,2)=0 Tor all y,z=0.
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Fram the ecuation Toy b, 2i=0 and our conditions it follows that

Tiy,2) has the form

P Y RN IR - —iday TR ¢ -
fily,2) = cy ~yjiz) + diy) -cz + zjiz) - Jiz), =y

e e —

for sorme Tunction strictly convew J(z), with dd/dz=s J{2i=j{z). The

Lt Mt o A afin taltee o > KT T T

converity of J(2) implies that the function fly,2), given by

fig,2) = -yjfzh + Jlg + zjizd - Jiz) (10
13 positive, It alzo Tollows that 1T 1{y,2) has Torm (2) then the necessary
candition {7) becomes

flQe,Pea) = ¢+ JE0) - PG = 0. (1)

In arder that f be p-admissible it is necessary and sufficient that the
strictly increasing function jiy) map the positive reals onto the entire
real line; we make this another candition:

Londition 5@ The range of j(y), for y>0, is the entire real line,
Example 1: Let j{z)= log{z), so that J{z)= zlng(z) - z ; then condition S
1 satisfied. For c=1 we have 1(y,2)= ylogly/z), so the distance is cross

entrapuy.

[}

Example 2: Let jiz) = -1/z, 3
satisfied. For c=0 we get f(y,z}=(y/2) - logly/2), If Pix)= constant, far
all ®, then the resulting D(Q,P) is equivalent to negative Burg entropy,
-J1og(Gix)idi. The Euler- Lagrange equation in this case leads to Qixi=
1/{ag*...+3y (%)), and the orthogonality principle says that the

-

‘maximum entropy method” (MEM) solution is the closest to R, amang all
density functions of its form, in the sense of minimizing the distance
QiR Ti= JIGR/T) - 1og(R/T)L. We shall return to the MEM later,
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that J(z)= -logiz); then condition § is not
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€. Characterizing the MCE rethad
"

e have seen that |
converse is also true:

Prooosition 20 17 7iy,2) satisfies {9) for all y,z>0 then DEQ,FY has the
arthoganality principle.

pranf: Let G(x1 be the unigue solution to Froblem A, The Euler-Lzarange
=quation 15 nowy j(ff.if.f::::))-jf.ﬁF'f.j:~::))=':a(_:,*...«*ap_:gk(x) =0 the condition defining

the claze 7 iz JITON-JIFED= tos+tq 00 for some constants tou..,ty.
Since (0 is data consistent it fallows that DIR,TI=D(O,TI+DIR,FI-0iG,F),
from which we conclude that DER,T) and D(Q,TY are simultaneously
minirnized. But DIO,C0<Di0,T) urless T=i

We see fram (9) that 7{y,z) containg terms that involve anly z; these
terms, when they appear in 0O(Q,P), will involve only the prior P, and nat
the unknown Q. It would seem artificial if D{Q,F) has the orthogonality
principle, but the distance obtained from O(Q,P) by amitting the terms
that do not involve Q does not. In fact, we can characterize the MCE in
precisely these terme; fly,2)=ylogly/z} is essentially the only function
of the form (9) having no terms invelving only the variable 2.

Fropocition Z: If f{y,2) has the fTorm (9) and 2j(z) ~J2) -cz = 0 forall 2
then D(Q,PI=jf(0,F) iz equivalent to E(Q,F)

proof, From the differential equation for J it follows easily that
J{z)=aizloal{z)) + bz, for some constants a and b.

Prapasition 4: If D{Q,P)=D(P,C} has the orthogonality principle then
D(Q,PJ) is equivalent to least squares; that iz, to the distance (G-2)%;
hence there is no symretric distance satisfying condition S that obeys
the arthgonality principle.

proof: The symmetry condition and (3} imply that J(y) satisfies the
fallowing differential equation, for each fized 2:

(7
o | J
PUp-(2Ay=2iiy) = ~(2A g2z 2) (1l

It then follows that J{y) is quadratic in u.
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7 The masimum entropy method of Burg and it sutensions

-
l
‘I
[y

In{]E ng considers the probiem of reconstructing the positive
power spectral density function Riw), |w|<n, from the finitely many
values af its Fourier transfarm,

n
f Rlw) exp(-inw) dw/2r , |n|<N

NG

The MEM he proposes adopts, as the estimate of Rlw), that positive
func Tan Q)= Q {or) zatisfying the constraints (12) for which the
MEM E 5

Burg entropy, [logtQfw))dw, 13 mazimized. The Euler-Lagrange equation
$3ys hat Quepld must hiave the form

(ll

N i
Quentw) = 1/ 2 b, explinw) , [w|m, (12)
n==-N

n

5

where the b are chosen co as to satisfy (17).

4
it does not follow from (12) that there will be a positive solution.

Havrever, c- g proceeds by assuming that there e a positive solution of
the form (1£), and uses the Fejer-Riesz theorem {[ ], p. 231) to rewrite
the solution in the form

N
Quprlwd= a5/ [ 2 a, explinw) [: fw[m, (14
n=0

where the polynomial A(z)= a agraz+ ...+a“4r has all its roots outside the
unit circle. He then shows that the vector g=(ao,...,aN)T must satisfy the
matrig equatmn Fa=é, where R 13 the N+ by N+ matrix with entries
R n-r » MaN= T He 1, and §= (1,000,037 S0 far everything ie baced

on the a ssumptwn that a positive solution auists.
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But now Zurg shows that, given the matrin & obtained fram the J278,
the 3=R ]-’- roust be such that A(Z2) has all its uots: cutside the unit
circle (that ig, a has the mwai qwm[e“"f‘é granerty), from which it

follows that the "'MEHW" n fM’l is data consis te F. So he has succeeded
in producing a positive, data conziztent function. The question still
rermains: Dioes this O ]EM'U-' actually maximize the Eurg entrclpg, armong
the class of data consistent power spectral densities?

That it does maximize the entropy follows from 3 consideratian of
the relationship betvreen the entropy and the error of or

ie-gtep prediction
¢i 3 time series fram knowledoe of its infinite p«aC. (see Papoulis [ ],
pd2?.
e nmpd earlier that fiy,z)=(y/z)-10g(y/z} gives the MEM, but the

Jy) faile to have condition 8. This suggests that, in general, the MEM
for n;hcm may nut lead 10 3 positive solution; this is the casze, for

sample, when R is defined on higher dimensional space, ar when the
Tunctmm g, are no‘ simply one-dimensional exponentiale,

It also causes difficulty if, in the problem considered by Burg, the
support of Riw) rs [-52,5], instead of [-m, 7, where 0<Q<m. The
polynomial in (1]') need not factar as before; all that the Euler-Lagr:
2quation requires iz that the zolution have the form (IJZ ) over [-" ’z
the polynomial can be negative for some values of w. There is no
quarantee that the function of the form (12) that is data consistent will

be positive within [-2,%).

Eurg’s maximurn entropy method (MEM) for reconstructing a po
function from Fourier tranzform values i€ justified 1 a method for
power spectrum estimation by appealing to the limiting expression for
the multivariata entropy of tirme-domain carmples of a8 Gaugsian random
pracess. As we have just seen, the maximization of [lag(Qix}idx, ~ub1e'**
to the data constraints, corre’ponm to the use of jiz)=-1/2 in (2), hence
has the orthogonality principle. The Euler-Lagrange equation shows that
the MEM solution has the form G(x)= 1/{ag+..+ayg Qi) , with the a,

1Sitive

chozen so as to make 0 d;t: cansistent. From Proposition 2 we know
that, whenever (i(x) exists, it provides a minimum, among all denf-‘mec
of 1ts farm, for the distance [[(R/T) -1og(R/T)] dx . Thus 8¢x) 1 cloge to
R} i an appropriate sense and the MEM is justified without apoesl to
Gauzzian procesees,
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unu hM'O Cons 11'1ur‘ad reconctr uctian mrncednrss hased on th

Hon o X

minimization of a dictance DIOFI=11(000,P{x)idx, subject to O saticiuimg
data constraints, where P0e) 15 3 prior estimate of the positive function

to be recovered. We have hmited the discussion to those f{y,oF eatisiying
certain conditions chesen toendovy DIO,F) with propertigs suitable 7o
zpprosimation, The MCE methad, bazed on the choifoe of (lu2i=uioziulz,

Sl W

2}

-

obeys an orthogonality principle analogous to that azzonizted wilh
arthioganal linear projection in Hilbert epace, and our abijective Nere wis
toinvestigate the extent to which thiz orthogonahity principle serves o
characterize MCE armonyg distances of the above form. Such 3
characterization would then provide a purely spproximation theoretis
justification for the MCE procedure

2 have ?“an that, in order for the distance DIQ,P)=(1(Q0:,PI)
to abey the o oqonahtg principle (as well as the other conditions) 1t ic
that 1(y,z) have the form

fly,2i= ey -yjiz) + Jy) -cz +zj(2) - J2), y,2=0, (1%
where J(y) 15 a strictly convex function with derivative jiy), anc ¢ 12
sorme constant. Terms m"nh'mg only plau na role when 00Q,F) 12

minimized ag a function of Q; 1f those terme vanizh identizally then the
diztance D is equivalent to cross entropy.

Annendix #: Proaf of Propozition |

If we formally differentiate the equation (7) defiming the class 7,
with respect to the variable Lics for some k=1,...,K, we abtain

T
(aT"Jf ) H‘T{"‘ Flx))= E‘t(j/atk * gk(x) e
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1

Fis v and consider (14D a2 a partial gifferential equztion for the funition
T=T(x .f,]. }_;',f'. wiewed 33 3 Tunction of T.,‘:,_....,tK. We rewrite (14) as

G770ty = Bty /At + gl KT, (17)

ue s

where hy) = higsi= 17, ({U,P{00, Let Gigi=Gly) be the (increasing]

anti-derivative of the function hiy) having the "conetant of integraftion”

2uch that

K a
GIOGMN= T &, g,le) . (18
k=0
Then the function

K 2.0
e Voo —.‘1-”-,—' r\\\ s L)
ll’,t:,,...,tKJ =L oL T‘\ gklu./-.t’ J {3<)

k=0

7
solves the nartial differential equation (14), is equal to G(x) when the
.,,-:‘ and is bounded shove and away from O, unifermly in %, for

t=itypentyd in @ neighborhond of 37{8 1 yeees B

5 For t in some neighborhood of z the function T(:f:;to,...,t}:.,) given by
0 N )

==3) will be 3 probability density function, hence the problem af

rimriizing O(R,T) over T in 7 can be viewed a5 that of minimizing
:rF i1 subject to the constraint [ T{E) = [T{xtddx =1, Farming the
Laarangian we obtain

0= 978t {DIRT(E - A [T ) |1y

or, differentiating under the integral,

0= [L [fﬁkﬂ" x,.k(/f.‘,] =3 ][@t(, t}/ + Q},\n” f] ]\ﬁ(n..P("'))J di (2
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0= { [f2If,F:i:«:},if_i{:::_‘.!‘,?}[(Eﬁt[:].-"ﬁitk) l foy * g}_,.(::::,‘},."f] 1{!f'.jlij:-::','i,F'(:«:,’.l'}}- ds. (27}

TN o8 4

4

Equation (2F) holds if we replace Rix) with any other pdf that is data

TR XT3
s

conziztent, If w18 any pont in > and U is a neighbiorhood of Ke W can .
find @ bounded rmeasurable Twiction T, supported on U, and orthogonal s
T, - L . . o

tooeach of the Qjs S0 that S(x)= Rl+an(x) iz 3 data consistent padf, Tar 'Y
2x0 srmall enoughy then (22 holds with 3040 instead of R(x). e
N

- . -~ .. . R et s o \'__
Replacing Ry with 3040 and then differentiating twice with respect N

—t
o
m
[}
T
o)
NI I 4

A
R s ~ P [0 N A — o~ p N .FJ{ .::
0= ({151 (G0 QUNEDTB /A ) | o5 + Gt/ T, Q) FEN . (27) ;_;E
23
The integral is over the neighborhaod U, since ©(x) is zero off U, ?
N
- ~ o
Mow let 2 = Q(sg) be some value in the range of Q, and y>0. By N/
iy
adding to R{x; a narrow Gaussian density centered at ¥=xq and then ]

1

correcting by 3 linear combination of the gy we can assume that Rixpi=y.

N
. S
If, in the neighborhood U af x4, the function [(8t,/0t) ll=§ + g L)) does x
ot change sign, then, by shrinking the neighborhood about =y, znd f','i
he
letting £ go to zern in 3{x}, we can conclude that 1o, 1 {y,zi=0, b _
Since we are interested in distances D{Q,P) that will be applied to 3 o
variety of proflems we are free to tailor the protilem to suit the N
s
technical aszumptions needed above. In particular, vwe can assume that -
the x are one-dimensional, that the g, are continuous in 3 neighbiorhacd R,
. ~
of kg and aszurne a given value only finitely many times. 5o, except
perhaps for finitely many values of K the above argument hoids and
o

Taypfu,zi=0 for 2=00%,) and any y»0. But this must te true for all

problems, co the conclugion then is that £, must be identically zero, ;:-_:
. e
for yz=0, Z'-:\
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Gabor representations and wavelets
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